Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Insights ; 17: 11786302221148274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644342

RESUMO

The global pandemic of COVID-19 has highlighted the importance of understanding the role that exhaled droplets play in virus transmission in community settings. Computational Fluid Dynamics (CFD) enables systematic examination of roles the exhaled droplets play in the spread of SARS-CoV-2 in indoor environments. This analysis uses published exhaled droplet size distributions combined with terminal aerosol droplet size based on measured peak concentrations for SARS-CoV-2 RNA in aerosols to simulate exhaled droplet dispersion, evaporation, and deposition in a supermarket checkout area and rideshare car where close proximity with other individuals is common. Using air inlet velocity of 2 m/s in the passenger car and ASHRAE recommendations for ventilation and comfort in the supermarket, simulations demonstrate that exhaled droplets <20 µm that contain the majority of viral RNA evaporated leaving residual droplet nuclei that remain aerosolized in the air. Subsequently ~ 70% of these droplet nuclei deposited in the supermarket and the car with the reminder vented from the space. The maximum surface deposition of droplet nuclei/m2 for speaking and coughing were 2 and 819, 18 and 1387 for supermarket and car respectively. Approximately 15% of the total exhaled droplets (aerodynamic diameters 20-700 µm) were deposited on surfaces in close proximity to the individual. Due to the non-linear distribution of viral RNA across droplet sizes, however, these larger exhaled droplets that deposit on surfaces have low viral content. Maximum surface deposition of viral RNA was 70 and 1.7 × 103 virions/m2 for speaking and 2.3 × 104 and 9.3 × 104 virions/m2 for coughing in the supermarket and car respectively while the initial airborne concentration of viral RNA was 7 × 106 copies per ml. Integrating the droplet size distributions with viral load distributions, this study helps explain the apparent importance of inhalation exposures compared to surface contact observed in the pandemic.

2.
Microvasc Res ; 122: 52-59, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30414869

RESUMO

Since of its introduction in 1980s, laser speckle imaging has become a powerful tool in flow imaging. Its high performance and low cost made it one of the preferable imaging methods. Initially, speckle contrast measurements were the main algorithm for analyzing laser speckle images in biological flows. Speckle contrast measurements, also referred as Laser Speckle Contrast Imaging (LSCI), use statistical properties of speckle patterns to create mapped image of the blood vessels. In this communication, a new method named Laser Speckle Optical Flow Imaging (LSOFI) is introduced. This method uses the optical flow algorithms to calculate the apparent motion of laser speckle patterns. The differences in the apparent motion of speckle patterns are used to identify the blood vessels from surrounding tissue. LSOFI has better spatial and temporal resolution compared to LSCI. This higher spatial resolution enables LSOFI to be used for autonomous blood vessels detection. Furthermore, Graphics Processing Unit (GPU) based LSOFI can be used for quasi real time imaging.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Fluxometria por Laser-Doppler/métodos , Imagem Óptica/métodos , Crânio/irrigação sanguínea , Animais , Velocidade do Fluxo Sanguíneo , Camundongos , Modelos Cardiovasculares , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Fatores de Tempo
3.
J Vis Exp ; (142)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582590

RESUMO

Particle image velocimetry (PIV) is used in a wide variety of fields, due to the opportunity it provides for precisely visualizing and quantifying flows across a large spatiotemporal range. However, its implementation typically requires the use of expensive and specialized instrumentation, which limits its broader utility. Moreover, within the field of bioengineering, in vitro flow visualization studies are also often further limited by the high cost of commercially sourced tissue phantoms that recapitulate desired anatomical structures, particularly for those that span the mesoscale regime (i.e., submillimeter to millimeter length scales). Herein, we present a simplified experimental protocol developed to address these limitations, the key elements of which include 1) a relatively low-cost method for fabricating mesoscale tissue phantoms using 3-D printing and silicone casting, and 2) an open-source image analysis and processing framework that reduces the demand upon the instrumentation for measuring mesoscale flows (i.e., velocities up to tens of millimeters/second). Collectively, this lowers the barrier to entry for nonexperts, by leveraging resources already at the disposal of many bioengineering researchers. We demonstratethe applicability of this protocol within the context of neurovascular flow characterization; however, it is expected to be relevant to a broader range of mesoscale applications in bioengineering and beyond.


Assuntos
Imagens de Fantasmas , Reologia/métodos , Microscopia de Fluorescência/métodos
4.
Environ Sci Technol ; 52(18): 10848-10855, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30089364

RESUMO

Plancha-type stoves have been widely disseminated in Mexico and Central America, but the contribution of fugitive emissions from these stoves to indoor air concentrations has been poorly quantified. In this study, fugitive emissions were measured for four plancha-type cookstoves most disseminated in Mexico (Patsari, ONIL, Ecostufa, and Mera-Mera). In controlled testing, fugitive emissions from plancha-type chimney stoves ( n = 15 for each stove) were on average 5 ± 3% for PM2.5 and 1 ± 1% for CO, much lower than defaults in WHO Guidelines (25 ± 10%). Using a Monte Carlo single zone model with locally measured parameters, average kitchen concentrations resulting from fugitive emissions were 15 ± 9 µg/m3 for PM2.5 and 0.06 ± 0.04 mg/m3 for CO. On the basis of these models, plancha-type stoves meet benchmarks for WHO Air Quality Guidelines (AQG) Interim Target I for PM2.5 and the 24 h AQG for CO, respectively, with on average 97% of homes meeting the guideline for PM2.5. Similarly, all four plancha-type stoves were ISO IWA Tier 4 for indoor emissions of CO and Tier 3 for indoor emissions of PM2.5. Three-dimensional computational fluid dynamics (CFD) analysis was used to estimate neighborhood pollution impacts of upstream chimney emissions. When chimney emissions were included as background concentrations combined with indoor contributions from fugitive emissions, plancha-type stoves would still meet the WHO AQG Annual Interim Target I for PM2.5 and the 24 h AQG for CO for the scenario modeled in this study.


Assuntos
Poluição do Ar em Ambientes Fechados , Utensílios Domésticos , América Central , Culinária , México , Material Particulado
5.
J Vis Exp ; (129)2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29286430

RESUMO

The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer was constructed with excelsior (shredded wood). We developed a methodology to measure mass loss, temperature, and flame height for both fuel layers. Thermocouples placed in each layer estimated temperature. A video camera captured the visible flame. Post-processing of digital imagery yielded flame characteristics including height and flame tilt. A custom crown mass loss instrument developed in-house measured the evolution of the mass of the crown layer during the burn. Mass loss and temperature trends obtained using the technique matched theory and other empirical studies. In this study, we present detailed experimental procedures and information about the instrumentation used. The representative results for the fuel mass loss rate and temperature filed within the fuel bed are also included and discussed.


Assuntos
Incêndios , Árvores , Vento , Madeira , California , Ecossistema , Temperatura
6.
J Air Waste Manag Assoc ; 63(4): 482-98, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23687733

RESUMO

The built environment surrounding arterials affects the dispersion of vehicular emissions in urban areas, modifying the potential risks to public health. In order to study the influence of urban morphometry on flow and dispersion of vehicular fine particulate matter emissions, in the summer of 2008 field measurements were performed in major arterials located in five Southern Californian cities with different building geometries. In each city, local mean wind, turbulence, virtual temperature, roadside DustTrak Fine Particles (DTFP) concentration, and traffic flow data were collected in 2-hr measurement periods during morning and evening rush hours and lighter midday traffic, over a period of 3 days. The calculated Monin-Obukhov length, L, suggests that near-neutral and slightly unstable conditions were present at both street and roof levels. The nondimensional forms of turbulent wind and temperature fluctuations show,that the data at street level within the urban canopy can be represented using the Monin-Obukhov similarity theory. Generalized additive models were applied to analyze the impact of meteorological and traffic-related variables on fine particle concentrations at street level Compared to other variables, urban-scale background concentrations were the most important variables in all five models. The results confirmed that turbulent mixing in urban areas dominated the variation of roadside particle concentrations regardless of urban geometry. The distance from the local sites to the nearby monitoring stations affected model performance when urban-scale concentrations were used to predict middle-scale concentrations by generalized additive models (GAMs). A radius ofinfluence for background concentrations was 6-10 km. There were also relationships between concentration and other variables affecting the local components of the concentrations, such as wind direction, sensible heat flux, and vertical wind fluctuation, although the influences were much weaker Implications: The built environment surrounding major arterials affects the dispersion of vehicular emissions in urban areas, modifying the potential risks to public health. Dispersion of pollutants within the urban canopy is governed by flow and turbulence characteristics caused by building morphometry. Current dispersion models used for regulatory purposes have difficulties simulating the flow and dispersion for complex building cases, especially when fine resolution is needed. Urban planning strategies, such as limitation of building height, pedestrian-friendly community design, or zoning of building structures, modify concentrations of vehicular emissions in built environments surrounding major arterials, which may modify health risks for adjacent communities.


Assuntos
Cidades , Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Tamanho da Partícula , Material Particulado/química , Emissões de Veículos/análise , California , Vento
7.
Rev Sci Instrum ; 80(7): 075102, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19655976

RESUMO

Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be included.


Assuntos
Centrifugação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Dimetilpolisiloxanos , Desenho de Equipamento , Fluorescência , Lasers , Luz , Microesferas , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...